首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   10篇
测绘学   1篇
大气科学   4篇
地球物理   30篇
地质学   21篇
海洋学   4篇
天文学   10篇
自然地理   1篇
  2023年   2篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   8篇
  2016年   7篇
  2015年   3篇
  2014年   6篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   6篇
  2008年   5篇
  2007年   2篇
  2005年   2篇
  2004年   2篇
  2002年   3篇
  2000年   1篇
  1998年   3篇
  1989年   1篇
排序方式: 共有71条查询结果,搜索用时 698 毫秒
11.
12.
Phenological observations of the anthesic phases of olive flowering in a central Mediterranean area were recorded over a 9-year period. The aim of this research was to compare the flowering dates in relationship to the meteorological changes. Pollen emission from anthers was monitored by remote instrumentation placed directly in olive groves and phenological data regarding daily pollen concentrations (pollen/m3) were recorded using a pollen monitoring methodology. The rhythm of the phenological phases emerged as dependent on the meteorological trend of the spring forcing temperature. Generally, the phenomenon of pollen emission occurred progressively earlier prior to 2001, while in the following 5 years, the trend seemed to be inverted, showing a progressive delay of flowering. The spring quarterly mean temperature trends registered by GISS data in Europe confirmed the presence of diverse meteorological behavior during the study period, probably causing the biological divergences that were monitored. The principal result of the present contribution is to evidence the relativity of empirical investigations and observations considering different time intervals. This is due to the partial, brief series (9 years) of flowering dates which have to be considered as part of a longer series (26 years) in order to have a complete vision of the true phenomenon.  相似文献   
13.
We used a new sedimentary record to reconstruct the Holocene vegetation and fire history of Gorgo Basso, a coastal lake in south-western Sicily (Italy). Pollen and charcoal data suggest a fire-prone open grassland near the site until ca 10,000 cal yr BP (8050 cal BC), when Pistacia shrubland expanded and fire activity declined, probably in response to increased moisture availability. Evergreen Olea europaea woods expanded ca 8400 to decline abruptly at 8200 cal yr BP, when climatic conditions became drier at other sites in the Mediterranean region. Around 7000 cal yr BP evergreen broadleaved forests (Quercus ilex, Quercus suber and O. europaea) expanded at the cost of open communities. The expansion of evergreen broadleaved forests was associated with a decline of fire and of local Neolithic (Ficus carica–Cerealia based) agriculture that had initiated ca 500 years earlier. Vegetational, fire and land-use changes ca 7000 cal yr BP were probably caused by increased precipitation that resulted from (insolation-forced) weakening of the monsoon and Hadley circulation ca 8000–6000 cal yr BP. Low fire activity and dense coastal evergreen forests persisted until renewed human activity (probably Greek, respectively Roman colonists) disrupted the forest ca 2700 cal yr BP (750 BC) and 2100 cal yr BP (150 BC) to gain open land for agriculture. The intense use of fire for this purpose induced the expansion of open maquis, garrigue, and grassland-prairie environments (with an increasing abundance of the native palm Chamaerops humilis). Prehistoric land-use phases after the Bronze Age seem synchronous with those at other sites in southern and central Europe, possibly as a result of climatic forcing. Considering the response of vegetation to Holocene climatic variability as well as human impact we conclude that under (semi-)natural conditions evergreen broadleaved Q. ilexO. europaea (s.l.) forests would still dominate near Gorgo Basso. However, forecasted climate change and aridification may lead to a situation similar to that before 7000 cal yr BP and thus trigger a rapid collapse of the few relict evergreen broadleaved woodlands in coastal Sicily and elsewhere in the southern Mediterranean region.  相似文献   
14.
The shock formation in a gravitating atmosphere is studied by following the general nonlinear theory of discontinuity waves. In particular, we perform a discussion on the stability of an isothermal and isoentropic atmosphere and we evaluate, when the shock appears, the critical time and the critical height. Some numerical results for the solar and terrestrial atmospheres are also given.  相似文献   
15.
The discharge hydrograph estimation in rivers based on reverse routing modeling and using only water level data at two gauged sections is here extended to the most general case of significant lateral flow contribution, without needing to deploy rainfall–runoff procedures. The proposed methodology solves the Saint‐Venant equations in diffusive form also involving the lateral contribution using a “head‐driven” modeling approach where lateral inflow is assumed to be function of the water level at the tributary junction. The procedure allows to assess the discharge hydrograph at ends of a selected river reach with significant lateral inflow, starting from the stage recorded there and without needing rainfall data. Specifically, the MAST 1D hydraulic model is applied to solve the diffusive wave equation using the observed stage hydrograph at the upstream section as upstream boundary condition. The other required data are (a) the observed stage hydrograph at the downstream section, as benchmark for the parameter calibration, and (b) the bathymetry of the river reach, from the upstream section to a short distance after the downstream gauged section. The method is validated with different flood events observed in two river reaches with a significant intermediate basin, where reliable rating curves were available, selected along the Tiber River, in central Italy, and the Alzette River, in Luxembourg. Very good performance indices are found for the computed discharge hydrographs at both the channel ends and along the tributaries. The mean Nash‐Sutcliffe value (NSq) at the channel ends of two rivers is found equal to 0.99 and 0.86 for the upstream and downstream sites, respectively. The procedure is also validated on a longer stretch of the Tiber River including three tributaries for which appreciable results are obtained in terms of NSq for the computed discharge hydrographs at both the channel ends for three investigated flood events.  相似文献   
16.
This study proposes a statistically based procedure to quantify the confidence interval (CI) to be associated to the stages forecast by a simple model called STAge FOrecasting Model‐Rating Curve Model (STAFOM‐RCM). This model can be used for single river reaches characterized by different intermediate drainage areas and mean wave travel times when real‐time stage records, cross section surveys and rating curves are available at both ends. The model requires, at each time of forecast, an estimate of the lateral contribution qfor between the two sections delimiting the reach. The CI of the stage is provided by analyzing the statistical properties of model output in terms of lateral flow, and it is derived from the CI of the lateral contribution qfor which, in turn, is set up by associating to each qfor the qopt which allows STAFOM‐RCM to reproduce the exact observed stage. From an operative point of view, the qfor values are ranked in order of magnitude and subdivided in classes where the qopt values can be represented through normal distributions of proper mean and variance from which an interval of selected confidence level for qfor is computed and transferred to the stage. Three river reaches of the Tiber river, in central Italy, are used as case study. A sensitivity analysis is also performed in order to identify the minimum calibration set of flood events. The CIs obtained are consistent with the level of confidence selected and have practical utility. An interesting aspect is that different CI widths can be produced for the same forecast stage since they depend on the estimate of qfor made at the time of forecast. Overall, the proposed procedure for CI estimate is simple and can be conveniently adapted for other forecasting models provided that they have physically based parameters which need to be updated during the forecast. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
17.
Olive cultivation is a widespread land use in Mediterranean climates. The proper implementation of soil and water conservation practices in groves requires detailed knowledge of the governing hydrological processes. In this work topsoil moisture dynamics under wet and dry conditions and across a small catchment was investigated in the inter row (IR) and directly under the olive tree canopies (UC). We do this using a sensor network (11 stations) and a simple bucket model which was calibrated (June, 2011–2012) and validated (June, 2012–2013). During most of the year the normalized soil moisture contents (s) were greater in the IR than under UC, with an average normalized soil moisture difference of 0.12. The difference between UC and IR normalized soil moisture followed a seasonal pattern, reaching a maximum near 0.30 during spring. An analysis of the normalized soil moisture probability density functions (pdfs) was bimodal, showing characteristic dominant wet and dry soil moisture states, with the highest probability densities for the dry state. Overall the spatial variability of soil moisture was lower UC than in the IR. This was a result of the soil moisture buffering capacity of the canopy with respect to rainfall and evaporation, in addition to observed differences in soil properties. Hourly soil moisture data were successfully modelled (R2 > 0.85), both UC and in the IR, yet with the inclusion of a simple formulation for canopy interception for the former. The results provide insight into how olive trees change hydrological processes in their neighbourhood. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
18.
The saturated hydraulic conductivity, Ks, is a soil property that has a key role in the partitioning of rainfall into surface runoff and infiltration. The commonly used instruments and methods for in situ measurements of Ks have frequently provided conflicting results. Comparison of Ks estimates obtained by three classical devices—namely, the double ring infiltrometer (DRI), the Guelph version of the constant‐head well permeameter (GUELPH‐CHP) and the CSIRO version of the tension permeameter (CSIRO‐TP) is presented. A distinguishing feature in this study is the use of steady deep flow rates, obtained from controlled rainfall–runoff experiments, as benchmark values of Ks at local and field‐plot scales, thereby enabling an assessment of these methods in reliably reproducing repeatable values and in their capability of determining plot‐scale variation of Ks. We find that the DRI grossly overestimates Ks, the GUELPH‐CHP gives conflicting estimates of Ks with substantial overestimation in laboratory experiments and underestimation at the plot scale, whereas the CSIRO‐TP yields average Ks values with significant errors of 24% in the plot scale experiment and 66% in laboratory experiments. Although the DRI would likely yield a better estimate of the nature of variability than the GUELPH‐CHP and CSIRO‐TP, a separate calibration may be warranted to correct for the overestimation of Ks values. The reasons for such discrepancies within and between the measurement methods are not yet fully understood and serve as motivation for future work to better characterize the uncertainty associated with individual measurements of Ks using these methods and the characterization of field scale variability from multiple local measurements.  相似文献   
19.
L. Brocca  F. Melone  T. Moramarco 《水文研究》2011,25(18):2801-2813
Nowadays, in the scientific literature many rainfall‐runoff (RR) models are available ranging from simpler ones, with a limited number of parameters, to highly complex ones, with many parameters. Therefore, the selection of the best structure and parameterisation for a model is not straightforward as it is dependent on a number of factors: climatic conditions, catchment characteristics, temporal and spatial resolution, model objectives, etc. In this study, the structure of a continuous semi‐distributed RR model, named MISDc (‘Modello Idrologico Semi‐Distribuito in continuo’) developed for flood simulation in the Upper Tiber River (central Italy) is presented. Most notably, the methodology employed to detect the more relevant processes involved in the modelling of high floods, and hence, to build the model structure and its parameters, is developed. For this purpose, an intense activity of monitoring soil moisture and runoff in experimental catchments was carried out allowing to derive a parsimonious and reliable continuous RR model operating at an hourly (or smaller) time scale. Specifically, in order to determine the catchment hydrological response, the important role of the antecedent wetness conditions is emphasized. The application of MISDc both for design flood estimation and for flood forecasting is reported here demonstrating its reliability and also its computational efficiency, another important factor in hydrological practice. As far as the flood forecasting applications are concerned, only the accuracy of the model in reproducing discharge hydrographs by assuming rainfall correctly known throughout the event is investigated indepth. In particular, the MISDc has been implemented in the framework of Civil Protection activities for the Upper Tiber River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
20.
T. Moramarco  V. P. Singh 《水文研究》2002,16(17):3419-3435
The kinematic‐wave and diffusive‐wave approximations were investigated for unsteady overland flow resulting from spatially varying rainfall excess. Three types of boundary conditions were adopted: zero flow at the upstream end, and critical flow and zero depth‐gradient at the downstream end. Errors were derived by comparing the dimensionless profiles of the flow depth over the plane with those computed from the dynamic‐wave solution. It was found that the mean errors for both the approximations were independent of the type of rainfall excess distribution for KF02 > 5, where K is the kinematic‐wave number and F0 is the Froude number. Therefore, the regions (KF02, F0) where the kinematic‐wave and diffusive‐wave solutions would be fairly accurate and for any distribution of spatially varying rainfall, were characterized. The kinematic‐wave approximation was reasonably accurate, with a mean error of less than 5% and for the critical depth at the downstream end, for KF02 ≥ 20 with F0 ≤ 1; if the rainfall excess was concentrated in a portion of the plane, the field where the kinematic‐wave solution was found accurate, it was more limited and characterized for KF02 > 35 with F0 ≤ 1. The diffusive‐wave solution was in good agreement with the dynamic‐wave solution with a mean error of less than 5%, in the flow depth, for KF02 ≥ 15 with F0 ≤ 1; for rainfall excess concentrated in a portion of the plane, the accuracy of the diffusion wave solution was in a region more restricted and defined for KF02 ≥ 30 with F0 ≤ 1. For zero‐depth gradient at the downstream end, the accuracy field of the kinematic‐wave was found to be greater and characterized for KF02 > 10 with F0 ≤ 1; for rainfall excess concentrated in a portion of the plane, the region was smaller and defined for KF02 > 15 with F0 ≤ 1. The diffusive‐wave solution was found accurate in the region defined for KF02 > 7·5, whereas for rainfall excess concentrated in a portion of the plane, the field of accuracy was for KF02 > 12·5 with F0 ≤ 1. The lower limits of the regions, defined on KF02, can be considered generally valid for both approximations, but for F0 < 1 smaller lower limits were also characterized. Finally, the accuracy of these approximations was influenced significantly by the downstream boundary condition. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号